

# BIOLOGICAL MOLECULES IN DEVELOPING ELECTRONIC DEVICES

#### Victor Diculescu

Laboratório de Electroanálise e Corrosão Instituto Pedro Nunes Coimbra, Portugal

#### **OUTLOOK**

- ✓ INTRODUCTION
- ✓ SELF-ASSEMBLED NANOSTRUCTURES. DNA AND

#### **NANOELECTRONICS**

- 1 TEMPLATE FOR CONSTRUCTING NANOCIRCUITS;
- 2 THE POTENTIAL TO PERFORM CALCULATIONS:
- 3 COMPUTATIONAL CIRCUIT; LOGIC GATE.
- **✓** CONCLUSION

Nanoelectronics is where physics, material science, chemistry and electric engineering inevitably meet.

## DEVELOPMENT OF SEMICONDUCTOR DEVICES

✓ BASES OF IC - metal-oxide-semiconductor (MOS) field-effect transistor (FET)



First commercial point contact transistor (1948)







Layout *Pentium* chip (2006)  $55 \times 10^9$  transistors (~1.3 µm)

#### MOSFET

3 nm (for RAM) < hSiO2 < 5 nm (for ROM) LIMITING FACTOR – The horizontal size







Denser devices scaling down MOSFETs to a gate length < 20 nm

- failure of the current driving capacity;
- thermal fluctuations:
- tunneling through the junction
- power dissipation

#### (BIO) MOLECULAR ELECTRONICS

- nanotechnology have already been achieved by biological systems
- machinery to "self-assemble" artificial structures

## SELF-ASSEBLED NANOSTRUCTURES; DNA IN NANOELECRONICS

## Why Use DNA to Build Devices?

- ✓ Molecules self-assemble to their minimum energy configuration;
- ✓ Molecules form stable structures;
- ✓ Control of DNA structure through its nucleotide sequence;
- ✓ Control of molecular interactions through sticky ends;
- ✓ Very small size (~ 2 nm in diameter).





#### **CONTROL OF DNA STRUCTURE**



#### **IMOBILE JUNCTION**



- Each criton must be unique
- The anti-criton spanning a bend must not be present in any strand
- Self-complementary critons not allowed
- The same base pair can only abut the junction twice and must not be on adjacent arms.

#### **NETWORKS**



N.C. Seeman, J. Theor. Biol., 99(1982)237C. Mao, W. Sun, N.C. Seeman, J. Am. Chem. Soc., 121(1999)5437

✓ Molecular motors - transfer of molecule free energy and removal of strand into mechanical action



a) assembly of DNA into networks



c) functional elements must be positioned



b) integration into a contact array



d) mettalization



#### **ELECTRICAL CONDUCTION THROUGH DNA**

#### **INSULATOR**

- 16 μm-long λ-DNA, 12-16 μm-spaced electrodes, single molecule Braun et al., Nature, 391 (1998) 775.
  - ✓ Template for conducting Ag nanowires
- 1.8  $\mu$ m-long  $\lambda$ -DNA, SFM, single molecule de Pablo et al., Phys. Rev. Lett., 85 (2000) 4992



#### **SEMICONDUCTOR**

•10.4 nm-long (30 bp) poly(G)-poly(C), 8 nm-spaced electrodes Porath et al., Nature, 403 (2000) 635

#### CONDUCTOR

- •600 nm-long λ-DNA, bundels in 2 nm hole
  Fink and Schonenberg, Nature, 398 (1999) 6726
  - ✓ coherent tunelling (no energy exachange)
  - ✓ thermal hopping between separated G.C base pairs



#### DNA TEMPLATED CNFET



- (i) RecA (*E. Coll*) monomers polymerize on a ssDNA molecule to form a nucleoprotein filament.
- (ii) Homologous recombination reaction leads to binding of the nucleoprotein filament at the desired address on an aldehydederivatized scaffold dsDNA molecule.
- (iii) The DNA-bound RecA is used to localize a streptavidin-functionalized SWNT, utilizing a primary antibody to RecA and a biotin-conjugated secondary antibody.
- (iv) Incubation in an AgNO3 solution leads to the formation of silver clusters on the segments that are unprotected by RecA.
- (v) Electroless gold deposition, using the silver clusters as nucleation centers, results in the formation of two DNA-templated gold wires contacting the SWNT bound at the gap.



## CNFET SELF-ASSEMBLED USING DNA







0 V to 0.8 V = logic 0 2 V to 5 V = logic 1

Starting with a circuit description, using tools for placement, routing, and electrical simulation it is possible to develop a viable circuit.

Published online at www.stacks.iop.org/Nano/15/1240

#### THE POTENTIAL TO PERFORM CALCULATIONS

#### 1994 - Leonard Adleman

| Step 1        | Generate random paths through the graph;                                            |  |  |
|---------------|-------------------------------------------------------------------------------------|--|--|
| <u>Step 2</u> | Keep only those paths that begins with 0                                            |  |  |
| and           | end with 6;                                                                         |  |  |
|               | The product of <u>Step 1</u> was amplified by PCR using                             |  |  |
|               | primers $\mathcal{O}_0$ and $\bar{\mathcal{O}}_6$                                   |  |  |
| Step 3        | If the graph has $n$ points, then keep only                                         |  |  |
|               | those paths that enter exactly <i>n</i> points;                                     |  |  |
|               | The product of <u>Step 2</u> was submitted to                                       |  |  |
|               | electrophoresis and 140-bp dsDNA was extracted                                      |  |  |
| Step 4        | Keep only those paths that enter all of the                                         |  |  |
|               | points of the graph once;                                                           |  |  |
|               | The product of <u>Step 3</u> was purified with $\bar{O}_j$ (0 <j<6)< td=""></j<6)<> |  |  |
|               | biotin-avidin magnetic beads system                                                 |  |  |





## COMPUTATIONAL CIRCUIT LOGIC GATE



can serve as an inpus to a downstream gate

AND gate performs a logical "and" operation on two inputs, A and B

| Α | В | Q |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

The idea

If A and B are both 1,
then Q should be 1

|   | REACTANTS                               | PRODUCTS                                |
|---|-----------------------------------------|-----------------------------------------|
| 1 | EFG, no input                           | Same as reactants                       |
| 2 | EFG + F <sub>in</sub>                   | Same as reactants                       |
| 3 | EFG + G <sub>in</sub>                   | EF + GG <sub>in</sub>                   |
| 4 | EFG + F <sub>in</sub> + G <sub>in</sub> | E + FF <sub>in</sub> + GG <sub>in</sub> |

## BIOLOGICAL MOLECULES IN NANOELECTRONICS

#### NANO-GEARS



- ✓ attaching benzyne molecules to the outside of a nanotube to form gear teeth.
- ✓ laser creates an electric field around the nanotube.
- ✓ placing two opposite charges on different faces of the nanotube, the electric field will drive the nanotube around it.

#### NEURON INTEGRATED FET



- ✓ Detection, Stimulation, and Inhibition of Neuronal Signals
- ✓ Arrays of nanowire-neuron junctions enable simultaneous measurement of the rate, amplitude, and shape of signals propagating along individual axons and dendrites.

## **CONCLUSION**

- ✓ demonstrations that may lead to useful application of nanoassembly are appearing;
- ✓ increased level in manipulation and automation are needed to prototype more complex and useful devices;
- ✓ pick-and-place operations and the construction of 3-D nanostructures are primitive and need further development;
- ✓ there is a need in creating programmed self-assembling rather than nanomanipulation