Fundamentos de Investigação Operacional

Ano
1
Ano lectivo
2024-2025
Código
02000925
Área Científica
Economia e Gestão
Língua de Ensino
Português
Outras Línguas de Ensino
Inglês
Modo de Ensino
Presencial
Duração
Semestral
Créditos ECTS
6.0
Tipo
Opcional
Nível
2º Ciclo - Mestrado

Conhecimentos de Base Recomendados

Álgebra Linear, Análise Matemática

Métodos de Ensino

Aulas expositivas de natureza tutorial em que os conceitos teóricos e metodológicos surgem motivados por problemas reais, sempre ilustradas com exemplos de aplicação.

Recurso a packages (comerciais ou de domínio público) para a obtenção das soluções óptimas para os modelos matemáticos, libertando o estudante para as tarefas mais criativas de formulação dos problemas, construção dos modelos e análise crítica dos resultados

Resultados de Aprendizagem

Dotar os alunos de competências metodológicas e aplicacionais num contexto de optimização em problemas de engenharia, permitindo a identificação de tipos de problemas, a construção modelos matemáticos adequados, a aprendizagem de algoritmos que produzam soluções óptimas para esses modelos. Será dada particular atenção à utilização de packages computacionais para a obtenção de soluções, bem como à análise de sensibilidade das soluções óptimas face à variação dos dados e parâmetros do modelo.

Estágio(s)

Não

Programa

0. Origem e natureza da Investigação Operacional (IO). Componentes de um estudo de IO. Modelação matemática.

1. Programação linear (PL). Formulação de problemas e construção de modelos matemáticos de PL. Resolução gráfica de modelos de PL. O método simplex. Teoria da dualidade. Análise de sensibilidade. O modelo de programação por metas (goal programming).

2. Problemas especiais de PL. O problema de transportes. Algoritmo para resolver o problema de transportes. O problema de afectação. Algoritmo Húngaro para resolver o problema de afectação. O problema de transexpedição. Transformação no problema de transexpedição num problema de transportes.

3. Problemas de optimização em redes. Problemas de caminho mais curto. Algoritmo de Dijkstra. Algoritmo de Floyd. Árvore abrangente mínima. Algoritmo de Prim. Caminho mais curto com custos fixos associados à passagem em nodos. Fluxo máximo. Teorema do fluxo máximo - corte mínimo. Algoritmo de Ford-Fulkerson. Fluxo de custo mínimo. Algoritmo bas

Docente(s) responsável(eis)

Carlos Alberto Henggeler de Carvalho Antunes

Métodos de Avaliação

Avaliação
Mini Testes: 20.0%
Exame: 80.0%

Bibliografia

- Hillier, F. S., G. J. Lieberman. "Introduction to Operations Research", McGraw-Hill, 2010 (9th ed.).

- Tavares, L. V., R. C. Oliveira, I. H. Themido, F. N. Correia. “Investigação Operacional”, McGraw-Hill Portugal, 1996.

- Bronson, R., G. Naadimuthu. "Investigação Operacional", Colecção Schaum (2ª. Ed.), McGraw-Hill Portugal, 2001.

- Clímaco, J., C. H.Antunes, M. J. Alves. "Programação Linear Multiobjectivo", Imprensa da Universidade de Coimbra, 2003.

- Chang, Y.L. "WinQSB, Decision Support Software for M/OM (ver 2.0)", Wiley, 2003.

- Antunes, C. H., L. V. Tavares (Coord.). "Casos de Aplicação da Investigação Operacional", McGraw-Hill, 2000.

- Oliveira, R., J. S. Ferreira (Coord.), “Investigação operacional em ação: casos de aplicação”, Imprensa da Universidade de Coimbra, 2014.