Complex Analysis

Year
0
Academic year
2024-2025
Code
01001359
Subject Area
Área Científica do Menor
Language of Instruction
Portuguese
Mode of Delivery
Face-to-face
Duration
SEMESTRIAL
ECTS Credits
6.0
Type
Elective
Level
1st Cycle Studies

Recommended Prerequisites

Solid background in Real Infinitesimal Analysis.

Teaching Methods

The course is expository. Some sessions of tutorials are provided. 

Learning Outcomes

The main objective is to provide knowledge in the area of complex analysis, essential in the background of a mathematician. The multiple applications of this area is a target always in mind and get special attention.

Generic skills and competences to be developed: computation ability; competence in the use of computational tools; knowledge of mathematical results;  ability for generalization and abstraction;  ability to formulate and solve problems; logical argumentation; individual initiative;  research capacity; autonomous learning ability; imagination and creativity.

Work Placement(s)

No

Syllabus

The Field of Complex Numbers, differentiability in C, integral calculus, Moebius Transformation, conformal mappings, Taylor and Laurent series, Singularities, residues, applications.     

Head Lecturer(s)

João Filipe Cortez Rodrigues Queiró

Assessment Methods

Continuous assessment
Frequency: 100.0%

Final assessment
Exam: 100.0%

Bibliography

L Ahlfors, Complex Analysis. 3ªed. McGraw-Hill, 1979.

N. Bebiano,  Análise Complexa e Aplicações e laboratórios de MATHEMATICA, Gradiva, 2.ed. Lisboa, 2012.