Symbolic Logic
0
2024-2025
01013385
Philosophy
Portuguese
Face-to-face
SEMESTRIAL
6.0
Elective
1st Cycle Studies
Recommended Prerequisites
NA
Teaching Methods
1) Theoretical and applied explanations by the teacher (50%).
2) Construction and systematic resolution of logical exercises (50%)
3) Homework assignments.
Learning Outcomes
The students must be able of:
1) describing the specific properties of logic as a deductive system;
2) managing efficiently the techniques of formalisation and application of inference schemes in propositional logic and predicate logic.
Work Placement(s)
NoSyllabus
A.Propositional Logic
1. Logic as calculus and deductive system
2. Non-logic examples of deductive systems
3. The idea of a formal logic: the notions of inference and validity
4. Basic notions of propositional logic:
4.1 The calculus
4.2 Truth tables
5. The language of logic and the language of everyday life
6. Tautologies, contradictions and contingent propositions
7. Laws
B. Predicate Logic
1. Distinction between propositional logic and predicate logic
2. Predicates and quantifiers
3. First-order predicate logic
4. The laws of first-order monadic predicates
5. Formalisation.
Head Lecturer(s)
José Guilherme Bandeira Antunes Sutil
Assessment Methods
Final evaluation
Exam: 100.0%
Continuous evaluation
Assessment can be made through a final exam which is worth 100% or during the semester (the sum of each item is also : 100.0%
Bibliography
Deaño, A. (1989). Introducción a la lógica formal, Madrid: Alianza Universidade Textos.
Garrido, M., Lógica simbólica, Madrid: Tecnos, 1974;
Hodges, W. (1977). Logic, London: Penguin Books.
Montaner, P., & Arnau, H. (1984). Teoria y prática de la lógica proposicional, Barcelona: Vicens-Vives.
Newton-Smith, W. H. (1998). Lógica: Um curso introdutório, trad. D. Murcho, Lisboa: Gradiva.
Salem, J. (1994). Introduction à la logique formelle et symbolique avec des exercices et leurs corrigés, Paris: Nathan University.
Suppes, P. (1973). Primer curso de lógica matemática, Barcelona: Reverté, 1973.
Tymoczko, U., & Henle, J. (1995). Sweet Reason: A Field Guide to Modern Logic, New York: Freeman and Company.